What is Infrared?

Our eyes are detectors which are designed to detect visible light waves (or visible radiation). Visible light is one of the few types of radiation that can penetrate our atmosphere and be detected on the Earth's surface. There are many forms of light (or radiation) which we cannot see with our eyes. Actually we can only see a very small part of the entire range of radiation called the electromagnetic spectrum .

The electromagnetic spectrum includes gamma rays, X-rays, ultraviolet, visible, infrared, microwaves, and radio waves. The only difference between these different types of radiation is their wavelength or frequency. Wavelength increases and frequency (as well as energy and temperature) decreases from gamma rays to radio waves. All of these forms of radiation travel at the speed of light (186,000 miles or 300,000,000 meters per second in a vacuum).

Infrared radiation lies between the visible and microwave portions of the electromagnetic spectrum. Infrared waves have wavelengths longer than visible and shorter than microwaves, and have frequencies which are lower than visible and higher than microwaves. Infrared is broken into three categories: near, mid and far-infrared. Near-infrared refers to the part of the infrared spectrum that is closest to visible light and far-infrared refers to the part that is closer to the microwave region. Mid-infrared is the region between these two.


Infrared view of a melting ice cube

Infrared view of a microwaved burrito


Old Faithful in the infrared
The primary source of infrared radiation is heat or thermal radiation. This is the radiation produced by the motion of atoms and molecules in an object. The higher the temperature, the more the atoms and molecules move and the more infrared radiation they produce. Any object which has a temperature i.e. anything above absolute zero (-459.67 degrees Fahrenheit or -273.15 degrees Celsius or 0 degrees Kelvin), radiates in the infrared. Absolute zero is the temperature at which all atomic and molecular motion ceases. Even objects that we think of as being very cold, such as an ice cube, emit infrared. When an object is not quite hot enough to radiate visible light, it will emit most of its energy in the infrared. For example, hot charcoal may not give off light but it does emit infrared radiation which we feel as heat. The warmer the object, the more infrared radiation it emits.



Courtesy of Meditherm
Humans, at normal body temperature, radiate most strongly in the infrared at a wavelength of about 10 microns (A micron is the term commonly used in astronomy for a micrometer or one millionth of a meter). This is the case for most warm-blooded animals. Cold-blooded animals, such as reptiles, will take on the temperature of their environment and are more difficult to detect in the infrared, unless compared to a cooler or warmer background.

Cold-blooded lizard in a warm human hand

We experience infrared radiation every day. The heat that we feel from sunlight, a fire, a radiator or a warm sidewalk is infrared. Although our eyes cannot see it, the nerves in our skin can feel it as heat. The temperature-sensitive nerve endings in your skin can detect the difference between your inside body temperature and your outside skin temperature. We also commonly use infrared rays when we operate a television remote.