Multiwavelength composite image of Messier 81
Creator: Spitzer Space Telescope, Pasadena, CA, USA
Image Source: http://www.spitzer.caltech.edu/images/1074-ssc2003-06d1-Infrared-Spiral-Galaxy-Messier-81
The magnificent spiral arms of the nearby galaxy Messier 81 are highlighted in this image from NASA's Spitzer Space Telescope. Located in the northern constellation of Ursa Major (which also includes the Big Dipper), this galaxy is easily visible through binoculars or a small telescope. M81 is located at a distance of 12 million light-years.
This Spitzer infrared image is a composite mosaic obtained with the multiband imaging photometer and the infrared array camera. Thermal infrared emission at 24 microns detected by the photometer (red, bottom left inset) is combined with camera data at 8.0 microns (green, bottom center inset) and 3.6 microns (blue, bottom right inset).
The 3.6-micron near-infrared data (blue) traces the distribution of stars, although the Spitzer image is virtually unaffected by obscuring dust and reveals a very smooth stellar mass distribution, with the spiral arms relatively subdued.
As one moves to longer wavelengths, the spiral arms become the dominant feature of the galaxy. The 8-micron emission (green) is dominated by infrared light radiated by hot dust that has been heated by nearby luminous stars. Dust in the galaxy is bathed by ultraviolet and visible light from nearby stars. Upon absorbing an ultraviolet or visible-light photon, a dust grain is heated and re-emits the energy at longer infrared wavelengths. The dust particles are composed of silicates (chemically similar to beach sand), carbonaceous grains and polycyclic aromatic hydrocarbons and trace the gas distribution in the galaxy. The well-mixed gas (which is best detected at radio wavelengths) and dust provide a reservoir of raw materials for future star formation.
The 24-micron multiband imaging photometer data (red) shows emission from warm dust heated by the most luminous young stars. The infrared-bright clumpy knots within the spiral arms show where massive stars are being born in giant H II (ionized hydrogen) regions. Studying the locations of these star forming regions with respect to the overall mass distribution and other constituents of the galaxy (e.g., gas) will help identify the conditions and processes needed for star formation.
Image Use Policy: http://www.spitzer.caltech.edu/info/18-Image-Use-Policy
View Options
Image Details
- Image Type
- Observation
- Object Name
- Bode's Galaxy • Messier 81 • M81 • NGC 3031 • UGC 5318
- Subject - Local Universe
- Galaxy » Type » Spiral
Position Details
- Position (ICRS)
- RA = 9h 55m 34.0s
- DEC = 69° 3’ 54.9”
- Orientation
- North is 268.7° CCW
- Field of View
- 23.5 x 17.9 arcminutes
- Constellation
- Ursa Major
Color Mapping
Telescope | Spectral Band | Wavelength | |
---|---|---|---|
Spitzer (IRAC) | Infrared (Near-IR) | 3.6 µm | |
Spitzer (IRAC) | Infrared (Near-IR) | 4.5 µm | |
Spitzer (IRAC) | Infrared (Mid-IR) | 5.8 µm | |
Spitzer (IRAC) | Infrared (Mid-IR) | 8.0 µm | |
Spitzer (MIPS) | Infrared (Mid-IR) | 24.0 µm | |
Multiple image collage; colors correspond to main image |